Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164552

RESUMO

Gordon Holmes syndrome (GHS) is a neurological disorder associated with neuroendocrine, cognitive, and motor impairments with corresponding neurodegeneration. Mutations in the E3 ubiquitin ligase RNF216 are strongly linked to GHS. Previous studies show that deletion of Rnf216 in mice led to sex-specific neuroendocrine dysfunction due to disruptions in the hypothalamic-pituitary-gonadal axis. To address RNF216 action in cognitive and motor functions, we tested Rnf216 knock-out (KO) mice in a battery of motor and learning tasks for a duration of 1 year. Although male and female KO mice did not demonstrate prominent motor phenotypes, KO females displayed abnormal limb clasping. KO mice also showed age-dependent strategy and associative learning impairments with sex-dependent alterations of microglia in the hippocampus and cortex. Additionally, KO males but not females had more negative resting membrane potentials in the CA1 hippocampus without any changes in miniature excitatory postsynaptic current (mEPSC) frequencies or amplitudes. Our findings show that constitutive deletion of Rnf216 alters microglia and neuronal excitability, which may provide insights into the etiology of sex-specific impairments in GHS.


Assuntos
Ataxia Cerebelar , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo , Microglia , Masculino , Feminino , Camundongos , Animais , Camundongos Knockout , Cognição , Ubiquitina-Proteína Ligases/genética
2.
Nutrients ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068808

RESUMO

Dietary restriction of the essential amino acid, methionine, has been shown to induce unique metabolic protection. The peripheral benefits of methionine restriction (MR) are well established and include improvements in metabolic, energy, inflammatory, and lifespan parameters in preclinical models. These benefits all occur despite MR increasing energy intake, making MR an attractive dietary intervention for the prevention or reversal of many metabolic and chronic conditions. New and emerging evidence suggests that MR also benefits the brain and promotes cognitive health. Despite widespread interest in MR over the past few decades, many findings are limited in scope, and gaps remain in our understanding of its comprehensive effects on the brain and cognition. This review details the current literature investigating the impact of MR on cognition in various mouse models, highlights some of the key mechanisms responsible for its cognitive benefits, and identifies gaps that should be addressed in MR research moving forward. Overall findings indicate that in animal models, MR is associated with protection against obesity-, age-, and Alzheimer's disease-induced impairments in learning and memory that depend on different brain regions, including the prefrontal cortex, amygdala, and hippocampus. These benefits are likely mediated by increases in fibroblast growth factor 21, alterations in methionine metabolism pathways, reductions in neuroinflammation and central oxidative stress, and potentially alterations in the gut microbiome, mitochondrial function, and synaptic plasticity.


Assuntos
Metionina , Obesidade , Camundongos , Animais , Metionina/metabolismo , Obesidade/metabolismo , Racemetionina , Ingestão de Energia , Cognição
4.
iScience ; 25(6): 104386, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620441

RESUMO

Recessive mutations in RNF216/TRIAD3 cause Gordon Holmes syndrome (GHS), in which dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis and neurodegeneration are thought to be core phenotypes. We knocked out Rnf216/Triad3 in a gonadotropin-releasing hormone (GnRH) hypothalamic cell line. Rnf216/Triad3 knockout (KO) cells had decreased steady-state GnRH and calcium transients. Rnf216/Triad3 KO adult mice had reductions in GnRH neuron soma size and GnRH production without changes in neuron densities. In addition, KO male mice had smaller testicular volumes that were accompanied by an abnormal release of inhibin B and follicle-stimulating hormone, whereas KO females exhibited irregular estrous cycling. KO males, but not females, had reactive microglia in the hypothalamus. Conditional deletion of Rnf216/Triad3 in neural stem cells caused abnormal microglia expression in males, but reproductive function remained unaffected. Our findings show that dysfunction of RNF216/TRIAD3 affects the HPG axis and microglia in a region- and sex-dependent manner, implicating sex-specific therapeutic interventions for GHS.

5.
Nutrients ; 13(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498671

RESUMO

Inflammation that accompanies obesity is associated with the infiltration of metabolically active tissues by inflammatory immune cells. This propagates a chronic low-grade inflammation associated with increased signaling of common inflammatory pathways such as NF-κB and Toll-like receptor 4 (TLR4). Obesity-associated inflammation is linked to an increased risk of chronic diseases, including type 2 diabetes, cardiovascular disease, and cancer. Preclinical rodent and cell culture studies provide robust evidence that berries and their bioactive components have beneficial effects not only on inflammation, but also on biomarkers of many of these chronic diseases. Berries contain an abundance of bioactive compounds that have been shown to inhibit inflammation and to reduce reactive oxygen species. Therefore, berries represent an intriguing possibility for the treatment of obesity-induced inflammation and associated comorbidities. This review summarizes the anti-inflammatory properties of blackberries, blueberries, strawberries, and raspberries. This review highlights the anti-inflammatory mechanisms of berries and their bioactive components that have been elucidated through the use of preclinical models. The primary mechanisms mediating the anti-inflammatory effects of berries include a reduction in NF-κB signaling that may be secondary to reduced oxidative stress, a down-regulation of TLR4 signaling, and an increase in Nrf2.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Obesidade/complicações , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Animais , Anti-Inflamatórios/química , Mirtilos Azuis (Planta)/química , Comorbidade , Fragaria/química , Inflamação/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Polifenóis/química , Espécies Reativas de Oxigênio/metabolismo , Rubus/química , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...